Enhanced Twitter Sentiment Classification Using Contextual Information
نویسندگان
چکیده
The rise in popularity and ubiquity of Twitter has made sentiment analysis of tweets an important and well-covered area of research. However, the 140 character limit imposed on tweets makes it hard to use standard linguistic methods for sentiment classification. On the other hand, what tweets lack in structure they make up with sheer volume and rich metadata. This metadata includes geolocation, temporal and author information. We hypothesize that sentiment is dependent on all these contextual factors. Different locations, times and authors have different emotional valences. In this paper, we explored this hypothesis by utilizing distant supervision to collect millions of labelled tweets from different locations, times and authors. We used this data to analyse the variation of tweet sentiments across different authors, times and locations. Once we explored and understood the relationship between these variables and sentiment, we used a Bayesian approach to combine these variables with more standard linguistic features such as n-grams to create a Twitter sentiment classifier. This combined classifier outperforms the purely linguistic classifier, showing that integrating the rich contextual information available on Twitter into sentiment classification is a promising direction of research.
منابع مشابه
A High-Performance Model based on Ensembles for Twitter Sentiment Classification
Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...
متن کاملSentence Modeling with Deep Neural Architecture using Lexicon and Character Attention Mechanism for Sentiment Classification
Tweet-level sentiment classification in Twitter social networking has many challenges: exploiting syntax, semantic, sentiment and context in tweets. To address these problems, we propose a novel approach to sentiment analysis that uses lexicon features for building lexicon embeddings (LexW2Vs) and generates character attention vectors (CharAVs) by using a Deep Convolutional Neural Network (Deep...
متن کامل[LVIC-LIMSI]: Using Syntactic Features and Multi-polarity Words for Sentiment Analysis in Twitter
This paper presents the contribution of our team at task 2 of SemEval 2013: Sentiment Analysis in Twitter. We submitted a constrained run for each of the two subtasks. In the Contextual Polarity Disambiguation subtask, we use a sentiment lexicon approach combined with polarity shift detection and tree kernel based classifiers. In the Message Polarity Classification subtask, we focus on the infl...
متن کاملThink Positive: Towards Twitter Sentiment Analysis from Scratch
In this paper we describe a Deep Convolutional Neural Network (DNN) approach to perform two sentiment detection tasks: message polarity classification and contextual polarity disambiguation. We apply the proposed approach for the SemEval2014 Task 9: Sentiment Analysis in Twitter. Despite not using any handcrafted feature or sentiment lexicons, our system achieves very competitive results for Tw...
متن کاملSSA-UO: Unsupervised Sentiment Analysis in Twitter
This paper describes the specifications and results of SSA-UO, unsupervised system, presented in SemEval 2013 for Sentiment Analysis in Twitter (Task 2) (Wilson et al., 2013). The proposal system includes three phases: data preprocessing, contextual word polarity detection and message classification. The preprocessing phase comprises treatment of emoticon, slang terms, lemmatization and POS-tag...
متن کامل